Chating

My Galery

Photo 1

My Galery

Photo 2

My Galery

Photo 3

My Galery

Photo 4

My Galery

Photo 5

Wednesday, May 1, 2013

seven segment

Penampil seven segment adalah sebuah piranti penampil untuk menampilkan angka desimal. Penampil seven segment banyak digunakan dalam jam digital, meter elektronik, dan piranti elektronik yang lain. Gambar 3.1 memperlihatkan bentuk fisik dan layout dasar penampil seven segment. Penampil seven segment terdiri atas 8 LED yang disusun seperti dalam Gambar 3.1(b). Setiap LED diidentifikasi sebagai huruf a, b, c, d, e, f, g, yang dimulai dari huruf a di sebelah atas. Di sebelah kanan terdapat satu LED tambahan yang digunakan sebagai koma (dp). Untuk menampilkan sebuah karakter, minimal 2 LED harus dinyalakan. Tabel 3.1 memperlihatkan kode heksadesimal untuk menampilkan angka 0 sampai 9. Dalam modul I/O yang dipakai dalam praktikum, seven segment yang digunakan ada 2 buah, semuanya bertipe common anoda. Kedua seven segment tersebut dimultipleks sehingga data diperoleh dari satu kaki (D0-D7), sedangkan untuk menyalakannya digunakan kaki kontrol yang berbeda (DO1 dan DO2). Rangkaian lengkap seven segment dapat dilihat dalam Gambar 3.2. Tabel 3.1 Kode heksadesimal untuk angka 0-9 Digit Kode g f e d c b a 0 0x3F off on on on on on on 1 0x06 off off off off on on off 2 0x5B on off on on on on 3 0x4F on off on on on on on 4 0x66 on on off off on on off 5 0x6D on on off on on off on 6 0x7D on on on on on off on 7 0x07 off off off off on on on 8 0x7F on on on on on on on 9 0x6F on on off on on on on

Tuesday, April 30, 2013

menyambung dan mencabang kabel



A.    MENYAMBUNG KABEL
 1.    Menyambung Kabel Cara Ekor Babi
Menyambung kabel dengan cara ekor babi adalah cara menyambung kabel yang paling sederhana dan mudah untuk dipraktekkan. Sambungan ini digunakan untuk menyambung dua kabel atau lebih. Sambungan ekor babi ini sering di jumpai pada kotak sambung instalasi rumah dan biasanya di pasangi lasdop sebagai isolasinya.
Menyambung cara ekor babi
a.       Sambungan Ekor Babi (pig tail)

2.    Menyambung Kabel Cara Puntir
Menyambung kabel dengan cara puntir ini adalah menyambung kabel yang tingkat kesulitannya di atas menyambung cara ekor babi. Sambungan ini untuk menyambung dua atau lebih kabel dengan bentuk lurus. Menyambung dengan cara puntir ini di bagi dengan dua cara yaitu Bell Hangers dan Western Union. Pada prinsipnya ke dua sambungan ini sama yang membedakan adalah jumlah puntiran yang membagi sambungan. Sambungan ini biasanya terdapat pada instansi penerangan dalam rumah.
Samb Bell hangers

Samb Western Union
a.       Bell Hangers

b.      Western Union


3.    Menyambung Kabel Cara Bolak - Balik ( turn back )
Menyambung Kabel dengan cara bolak – balik ini bertujuan untuk mendapatkan sambungan kabel yang lebih kuat terhadap rentangan maupun tarikan. Cara pembuatannya hampir sama dengan menyambung puntir. Perbedaannya terletak pada bentuknya yang panjang dan bervarisai.
Samb bolak-balik
a.       Menyambung Kabel Bolak – Balik

B.       MENCABANG KABEL

1.         Mencabang datar
Pada kabel yang panjang dan ketika kita membutuhkan percabangan maka tidak perlu memutus kabel tersebut, cukup dengan mencabangnya  dengan cara mencabang datar. Percabangan ini di bagi 2 macam yaitu  plain joint dan plain cros joint.
Plain joint

Plain cross joint
a.       plain joint

b.      plain cros joint

2.       Mencabang simpul
Pada percabangan kabel ini hampir sama dengan mencabang datar. Perbedaannya terleteak pada sambungan kabel yang di tambahi dengan simpul sehingga sambungan akan lebih kuat terhadap tarikan. Percabangan ini di bagi 2 macam yaitu knotted tap joint dan knotted tap cros joint.
knoted tap joint

knoted tap cross joint
a.       knotted tap joint

b.      knotted tap cros joint

macam-macam gerbang logika

Gerbang logika atau gerbang logik adalah suatu entitas dalam elektronika dan matematika boolean yang mengubah satu atau beberapa masukan logik menjadi sebuah sinyal keluaran logik. Gerbang logika terutama diimplementasikan secara elektronis menggunakan dioda atau transistor, akan tetapi dapat pula dibangun menggunakan susunan komponen-komponen yang memanfaatkan sifat-sifat elektromagnetik (relay). Logika merupakan dasar dari semua penalaran (reasoning). Untuk menyatukan beberapa logika, kita membutuhkan operator logika dan untuk membuktikan kebenaran dari logika, kita dapat menggunakan tabel kebenaran.
Tabel kebenaran menampilkan hubungan antara nilai kebenaran dari proposisi atomik. Dengan tabel kebenaran, suatu persamaan logika ataupun proposisi bisa dicari nilai kebenarannya. Tabel kebenaran pasti mempunyai banyak aplikasi yang dapat diterapkan karena mempunyai fungsi tersebut. Salah satu dari aplikasi tersebut yaitu dengan menggunakan tabel kebenaran kita dapat mendesain suatu rangkaian logika. Dalam makalah ini akan dijelaskan bagaimana peran dan kegunaan tabel kebenaran dalam proses pendesainan suatu rangkaian logika.
Gerbang yang diterjemahkan dari istilah asing gate, adalah elemen dasar dari semua rangkaian yang menggunakan sistem digital. Semua fungsi digital pada dasarnya tersusun atas gabungan beberapa gerbang logika dasar yang disusun berdasarkan fungsi yang diinginkan. Gerbang -gerbang dasar ini bekerja atas dasar logika tegangan yang digunakan dalam teknik digital.Logika tegangan adalah asas dasar bagi gerbang-gerbang logika. Dalam teknik digital apa yang dinamakan logika tegangan adalah dua kondisi tegangan yang saling berlawanan. Kondisi tegangan “ada tegangan” mempunyai istilah lain “berlogika satu” (1) atau “berlogika tinggi” (high), sedangkan “tidak ada tegangan” memiliki istilah lain “berlogika nol” (0) atau “berlogika rendah” (low). Dalam membuat rangkaian logika kita menggunakan gerbang-gerbang logika yang sesuai dengan yang dibutuhkan. Rangkaian digital adalah sistem yang mempresentasikan sinyal sebagai nilai diskrit. Dalam sebuah sirkuit digital,sinyal direpresentasikan dengan satu dari dua macam kondisi yaitu 1 (high, active, true,) dan 0 (low, nonactive,false).” (Sendra, Smith, Keneth C)
Rangkaian Terpadu (IC) Untuk Gerbang -Gerbang Dasar
Setelah mengenal gerbang-gerbang dasar yang digunakan dalam teknik digital, bagi para pemula mengkin saja timbul pertanyaan dimana gerbang-gerbang ini dapat diperoleh? Jawabannya mudah sekali, karena gerbang- gerbang ini telah dijual secara luas dipasaran dalam IC tunggal (single chip). Yang perlu diperhatikan sekarang adalah dari jenis apa dan bagaimana penggunaan dari kaki-kaki IC yang telah didapat. Sebenarnya informasi dari IC-IC yang ada dapat dengan mudah ditemukan dalam buku data sheet IC yang sekarang ini banyak dijual. Namun sedikit contoh berikut mungkin akan me mpermudah pencarian. Berikut adalah keterangan mengenai IC-IC yang mengandung gerbang-gerbang logika dasar yang dengan mudah dapat dijumpai dipasaran.
Catatan:
  • Ada dua golongan besar IC yang umum digunakan yaitu TTL (Transistor Transistor Logic) dan CMOS (Complentary Metal Oxide Semikonduktor)
  • IC dari jenis TTL memiliki mutu yang relatif lebih baik daripada CMOS dalam hal daya yang dibutuhkan dan kekebalannya akan desah.
  • IC TTL membutuhkan catu tegangan sebesar 5 V sedangkan CMOS dapat diberi catu tegangan mulai 8 V sampai 15 V. Hali ini harus diingat benar-benar karena kesalahan pemberian catu akan merusakkan IC.
  • Karena adanya perbedaan tegangan catu maka tingkat tegangan logika juga akan berbeda. Untuk TTL logika satu diwakili oleh tegangan sebesar maksimal 5 V sedangkan untuk CMOS diwakili oleh tegangan yang maksimalnya sebesar catu yang diberikan, bila catu yang diberikan adalah 15 V maka logika satu akan diwakili oleh tegangan maksimal sebesar 15 V. Logika pada TTL dan CMOS adalah suatu tegangan yang harganya mendekati nol.
  • Untuk TTL nama IC yang biasanya terdiri atas susunan angka dimulai dengan angka 74 atau 54 sedangkan untuk CMOS angka ini diawali dengan 40.”(Ian Robertson Sinclair, Suryawan)

Jenis-jenis Gerbang Logika :
Gerbang NOT (NOT Gate)
Gerbang NOT atau juga bisa disebut dengan pembalik (inverter) memiliki fungsi membalik logika tegangan inputnya pada outputnya. Sebuah inverter (pembalik) adalah gerbang dengan satu sinyal masukan dan satu sinyal keluaran dimana keadaan keluaranya selalu berlawanan dengan keadaan masukan. Membalik dalam hal ini adalah mengubah menjadi lawannya. Karena dalam logika tegangan hanya ada dua kondisi yaitu tinggi dan rendah atau “1” dan “0”, maka membalik logika tegangan berarti mengubah “1” menjadi “0” atau sebaliknya mengubah nol menjadi satu. Simbul atau tanda gambar pintu NOT ditunjukkan pada gambar dibawah ini.



Gerbang AND (AND Gate)
Gerbang AND (AND GATE) atau dapat pula disebut gate AND ,adalah suatu rangkaian logika yang mempunyai beberapa jalan masuk (input) dan hanya mempunyai satu jalan keluar (output). Gerbang AND mempunyai dua atau lebih dari dua sinyal masukan tetapi hanya satu sinyal keluaran. Dalam gerbang AND, untuk menghasilkan sinyal keluaran tinggi maka semua sinyal masukan harus bernilai tinggi.


Gerbang OR (OR Gate)
Gerbang OR berbeda dengan gerbang NOT yang hanya memiliki satu input, gerbang ini memiliki paling sedikit 2 jalur input. Artinya inputnya bisa lebih dari dua, misalnya empat atau delapan. Yang jelas adalah semua gerbang logika selalu mempunyai hanya satu output. Gerbang OR akan memberikan sinyal keluaran tinggi jika salah satu atau semua sinyal masukan bernilai tinggi, sehingga dapat dikatakan bahwa gerbang OR hanya memiliki sinyal keluaran rendah jika semua sinyal masukan bernilai rendah.


Gerbang NAND
Gerbang NAND adalah suatu NOT-AND, atau suatu fungsi AND yang dibalikkan. Dengan kata lain bahwa gerbang NAND akan menghasilkan sinyal keluaran rendah jika semua sinyal masukan bernilai tinggi.


Gerbang NOR
Gerbang NOR adalah suatu NOT-OR, atau suatu fungsi OR yang dibalikkan sehingga dapat dikatakan bahwa gerbang NOR akan menghasilkan sinyal keluaran tinggi jika semua sinyal masukanya bernilai rendah.


Gerbang X-OR
Gerbang X-OR akan menghasilkan sinyal keluaran rendah jika semua sinyal masukan bernilai rendah atau semua masukan bernilai tinggi atau dengan kata lain bahwa X-OR akan menghasilkan sinyal keluaran rendah jika sinyal masukan bernilai sama semua.


Gerbang X-NOR
Gerbang X-NOR akan menghasilkan sinyal keluaran tinggi jika semua sinyal masukan bernilai sama (kebalikan dari gerbang X-OR).

sistem bilangan digital



 SISTEM BILANGAN

Sistem bilangan adalah kode atau simbol yang digunakan untuk menerangkan sejumlah hal secara detail. Sistem bilangan adalah bahasa yang berisi satu set pesan simbul-simbul yang berupa angka dengan batasan untuk operasi aritmatika penjumlahan, perkalian dan yang lainnya. Pada sistem bilangan terdapat bilangan integer dan bilangan pecahan dengan titik radix “.”.
(N) r = [ (bagian integer . bagian pecahan) r)
                              Titik  radix
  

2.1.   Sistem Bilangan Biner

Sistem bilangan biner adalah suatu sistem atau cara menghitung bilangan dengan hanya menggunakan dua simbol angka yaitu ‘0’ dan ‘1’, bilangan ini sering disebut dengan sistem bilangan berbasis atau radix 2 .Sistem bilangan biner digunakan untuk mempresentasikan alat yang mempunyai dua keadaan operasi yang dapat dioperasikan dalam dua keadaan ekstrim. Contoh switch dalam keadaan terbuka atau tertutup, lampu pijar dalam keadaan terang atau gelap, dioda dalam keadaan menghantar atau tidak menghantar, transistor dalam keadaan cut off atau saturasi, fotosel dalam keadaan terang atau gelap, thermostat dalam keadaan terbuka atau tertutup, Pita magnetik dalam keadaan magnet atau demagnet.

 

2.2.   Sistem Bilangan Desimal.

Sistem bilangan desimal adalah suatu sistem atau cara menghitung bilangan dengan menggunakan sepuluh simbol angka yaitu ‘0’ ,‘1’, ‘2’,’3’,’4’,’5’,’6’,’7’,’8’ dan ‘9’ bilangan ini sering disebut dengan sistem bilangan berbasis atau radix 10. Sistem bilangan desimal kurang cocok digunakan untuk sistem digital karena sangat sulit merancang pesawat elektronik yang dapat bekerja dengan 10 level (tiap-tiap level menyatakan karakter desimal mulai 0 sampai 9)
Sistem  bilangan desimal adalah positional-value system,dimana nilai dari suatu digit  tergantung  dari  posisinya.  Nilai  yang  terdapat  pada  kolom ketiga pada Tabel 2.1., yaitu A, disebut satuan, kolom kedua yaitu B disebut puluhan, C disebut ratusan, dan seterusnya. Kolom A, B, C menunjukkan kenaikan pada eksponen dengan basis 10 yaitu 100 = 1, 101 = 10, 102 = 100. Dengan cara yang sama, setiap kolom pada sistem  bilangan biner yang berbasis 2,  menunjukkan  eksponen  dengan basis 2, yaitu 20 = 1, 21 = 2, 22 = 4, dan seterusnya.

Tabel 2.1. Nilai Bilangan Desimal dan Biner

Kolom desimal
Kolom biner
C
102 = 100
(ratusan)
B
101 = 10
(puluhan)
A
100 = 1
(satuan)
C
22 = 4
(empatan)
B
21 = 2
(duaan)
A
20 = 1
(satuan)







Setiap digit biner disebut bit; bit paling kanan disebut least significant bit (LSB), dan bit paling kiri disebut most significant bit (MSB).
Untuk membedakan bilangan pada sistem yang berbeda digunakan subskrip. Sebagai contoh 910 menyatakan bilangan sembilan pada sistem bilangan desimal, dan 011012 menunjukkan 01101 pada sistem bilangan biner. Subskrip tersebut sering diabaikan jika sistem bilangan yang dipakai sudah jelas.

2.3.   Sistem Bilangan Oktal.

Sistem bilangan oktal adalah suatu sistem atau cara menghitung bilangan dengan menggunakan delapan simbol  angka yaitu ‘0’ ,‘1’, ‘2’,’3’,’4’,’5’,’6’,dan ’7’ bilangan ini sering disebut dengan sistem bilangan berbasis atau radix 8. Sistem bilangan oktal digunakan sebagai  alternatif untuk menyederhanakan sistem pengkodean biner. Karena 8 = 23, maka satu (1) digit oktal dapat mewakili tiga (3) digit biner.

2.4.   Sistem Bilangan Heksadesimal.

Sistem bilangan heksadesimal adalah suatu sistem atau cara menghitung bilangan dengan menggunakan 16 simbol yaitu ‘0’ ,‘1’, ‘2’,’3’,’4’,’5’,’6’,’7’,’8’,’9’,
’A’,’B’, ’C’,’D’,’E’, dan ‘F’ bilangan ini sering disebut dengan sistem bilangan berbasis atau radix 16. Identik dengan sistem bilangan oktal, sistem bilangan heksadesimal juga digunakan untuk   alternatif penyederhanaan sistem pengkodean biner. Karena 16 = 24, maka satu (1) digit heksadesimal dapat mewakili empat (4) digit biner.

2.5.   Konversi Bilangan

2.5.1.      Konversi bilangan desimal ke biner.

          Cara untuk mengubah bilangan desimal ke biner adalah dengan membagi bilangan desimal yang akan diubah, secara berturut-turut dengan pembagi 2, dengan memperhatikan sisa pembagiannya. Sisa pembagian akan bernilai 0 atau 1, yang akan membentuk bilangan biner dengan sisa yang terakhir menunjukkan MSBnya. Sebagai contoh, untuk mengubah 5210 menjadi bilangan biner, diperlukan langkah-langkah berikut :
52/2   =   26 sisa 0, LSB
26/2   =   13 sisa 0
13/2   =     6 sisa 1
6/2     =    3 sisa 0
3/2     =    1 sisa 1
½       =    0 sisa 1, MSB
Sehingga bilangan desimal 5210 dapat diubah menjadi bilangan biner 1101002.
Cara di atas juga bisa digunakan untuk mengubah sistem bilangan yang lain, yaitu oktal atau heksadesimal.

Tabel 2.2. Daftar Bilangan Desimal dan Bilangan Biner Ekivalensinya

Desimal
Biner
C (MSB)
(4)
B
(2)
A (LSB)
(1)
0
1
2
3
4
5
6
7
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1


2.5.2.      Konversi bilangan desimal ke oktal.
Teknik pembagian yang berurutan dapat digunakan untuk mengubah bilangan desimal menjadi bilangan oktal. Bilangan desimal yang akan diubah secara berturut-turut dibagi dengan 8 dan sisa pembagiannya harus selalu dicatat. Sebagai contoh, untuk mengubah bilangan 581910 ke oktal, langkah-langkahnya adalah :
5819/8  =   727,       sisa 3, LSB
727/8    =   90,         sisa 7
90/8       =   11,         sisa 2
11/8       =   1,           sisa 3
1/8         =   0,           sisa 1, MSB
Sehingga 581910 = 132738

2.5.3.      Konversi bilangan desimal ke heksadesimal.
Teknik pembagian yang berurutan dapat juga digunakan untuk mengubah bilangan desimal menjadi bilangan heksadesimal. Bilangan desimal yang akan diubah secara berturut-turut dibagi dengan 16 dan sisa pembagiannya harus selalu dicatat. Sebagai contoh, untuk mengubah bilangan 340810 menjadi bilangan heksadesimal, dilakukan dengan langkah-langkah sebagai berikut :

3409/16     =  213,              sisa   110            =          116, LSB
213/16       =  13,                sisa   510            =          516
13/16        =     0,                sisa 1310            =          D16, MSB
Sehingga, 340910 = D5116.

2.5.4.      Konversi bilangan biner ke desimal.
Seperti yang terlihat pada tabel 2.1. sistem bilangan biner adalah suatu sistem posisional dimana tiap-tiap digit (bit) biner mempunyai bobot tertentu berdasarkan atas posisinya terhadap titik biner seperti yang ditunjukkan pada tabel 2.3.



Tabel 2.3. Daftar Bobot tiap bit Bilangan Biner dan Ekivalensinya dalam desimal

24
23
22
21
20
2-1
2-2
2-3
Bobot tiap-tiap bit biner
                                      Titik biner
16
8
4
2
1
0.5
0.25
0.125
  Ekivalensinya dalam desimal
                            Titik desimal

Oleh karena itu bilangan biner dapat dikonversikan ke bilangan desimal dengan cara menjumlahkan bobot dari masing-masing posisinya yang bernilai 1.
Sebagai contoh, untuk mengubah bilangan biner 1100112 menjadi bilangan desimal dapat dilakukan sebagai berikut:

1        1      0     0     1       1                             Biner
25   +  24  +                21  +  20
32 +  16 +                2   + 1 = 51                      Desimal

Sehingga bilangan biner 1100112 berubah menjadi bilangan desimal 5110.
Tabel 2.4. adalah contoh perubahan beberapa bilangan biner menjadi bilangan desimal.

Tabel 2.4. Contoh Pengubahan Bilangan Biner menjadi Desimal

Biner
Kolom biner
Desimal
32
16
8
4
2
1
1110
1011
11001
10111
110011
-
-
-
-
1
-
-
1
1
1
1
1
1
0
0
1
0
0
1
0
1
1
0
1
1
0
1
1
1
1
           8 +  4 +  2 + 0 =14
           8 +  0 +  2 + 1 =11
     16+ 8 +  0 +  0 + 1 =25
     16+ 0 +  4 +  2 + 1 =23
32+16+ 0 +  0 +  2 + 1 = 51


 Cara lain untuk mengkonversikan bilangan biner menjadi bilangan desimal dapat dilakukan dengan cara menjumlahkan angka 2 dengan pangkat koefisien biner yang berharga 1. Sebagai contoh, untuk mengubah bilangan 101112 menjadi bilangan desimal, dilakukan dengan langkah-langkah sebagai berikut :
101112 = 1x 24 + 0x 23 + 1x 22 + 1x 21 + 1x 20 = 2310

 

2.5.5.      Konversi bilangan biner ke oktal.
Konversi dari bilangan biner ke bilangan oktal dilakukan dengan mengelompokkan setiap tiga digit biner dimulai dari digit paling kanan(LSB). Kemudian, setiap kelompok diubah secara terpisah ke dalam bilangan oktal.
Sebagai contoh, bilangan 111100110012 dapat  dikelompokkan menjadi:           11   110   011   001, sehingga,
112    =   38, MSB
1102      =        68
0112 =   38
0012 =   1, LSB
Jadi, bilangan biner 111100110012 apabila diubah menjadi bilangan oktal = 36318.

2.5.6.      Konversi bilangan biner ke heksadesimal.

Bilangan biner dapat diubah menjadi bilangan heksadesimal dengan cara mengelompokkan setiap empat digit dari bilangan biner tersebut dimulai dari digit paling kanan (LSB). Kemudian, setiap kelompok diubah secara terpisah ke dalam bilangan heksadesimal.
 Sebagai contoh, 01001111010111102 dapat dikelompokkan menjadi:           0100    1111    0101    1110. Sehingga:
01002  =  416, MSB
11112  =  F16
01012  =  516
11102  =  E16, LSB
Dengan demikian, bilangan 01001111010111102 = 4F5E16.

2.5.7.      Konversi bilangan oktal ke desimal.
Sistem bilangan oktal adalah suatu sistem posisional dimana tiap-tiap digit oktal mempunyai bobot tertentu berdasarkan atas posisinya terhadap titik oktal seperti yang ditunjukkan pada tabel 2.5.

Tabel 2.5. Daftar Bobot tiap digit bilangan oktal dan ekivalensinya dalam desimal

84
83
82
81
80
8-1
8-2
Bobot tiap-tiap digit oktal
                                          Titik oktal
4096
512
64
8
1
0.125
0.015625
Ekivalensinya dalam desimal
                                Titik desimal

Oleh karena itu bilangan oktal dapat dikonversikan ke bilangan desimal dengan cara menjumlahkan bobot kali nilai-nilai dari masing-masing posisinya.
 Sebagai contoh, untuk mengubah bilangan oktal 3728 menjadi bilangan desimal dapat dilakukan sebagai berikut:
 3            7          2                                             Oktal
3x82  +   7x81  +  2x80
192   +  56     +   2       = 250                              Desimal
Sehingga bilangan oktal 3728 berubah menjadi bilangan desimal 25010.

2.5.8.      Konversi bilangan oktal ke biner.
Konversi dari bilangan oktal ke bilangan biner dilakukan dengan cara mengubah setiap digit pada bilangan oktal secara terpisah menjadi ekivalen biner  3 digit, seperti yang terlihat pada Tabel 2.6.

Tabel 2.6. Ekivalen  setiap digit  bilangan oktal menjadi 3 bit  bilangan biner


Digit oktal
0
1
2
3
4
5
6
7
Ekivalen biner 3 bit
000
001
010
011
100
101
110
111

Sebagai contoh, bilangan oktal 35278 dapat diubah menjadi bilangan biner dengan cara sebagai berikut:
38 = 0112, MSB
58 = 1012
28 = 0102
78 = 1112, LSB
Sehingga bilangan oktal 35278 sama dengan bilangan biner 011 101 010 1112.
2.5.9.      Konversi bilangan oktal ke heksadesimal.
Konversi dari bilangan oktal ke bilangan heksadesimal  dapat  dilakukan dengan cara mengubah bilangan oktal ke bilangan biner atau ke bilangan desimal terlebih dahulu. Sebagai contoh, bilangan oktal 3278 dapat diubah menjadi bilangan heksadesimal  dengan cara diubah dulu ke bilangan desimal, sebagai berikut:
Oktal                        3                  2                7
Desimal                 3x82      +     2x81         +   7x80 = 215
 Selanjutnya hasil bilangan desimal diubah ke bilangan heksadesimal,
215/16      =  13, sisa   710 =   716, LSB
13/16        =    0, sisa 1310 =   D16, MSB
Sehingga, 3278  =  215 10 = D716.
Cara lain diubah dulu ke bilangan biner, sebagai berikut:
          Oktal                        3                  2                7
Biner                      011              010           111
 Selanjutnya hasil bilangan biner dikelompokkan setiap empat bit dimulai dari digit paling kanan (LSB). Kemudian, setiap kelompok diubah secara terpisah ke dalam bilangan heksadesimal.
Biner                         0               1101          0111
           Heksadesimal          0                  D                7
Sehingga, 3278  =  110101112 = D716.

2.5.10.  Konversi bilangan heksadesimal ke desimal.
Sistem bilangan heksadesimal adalah suatu sistem posisional dimana tiap-tiap digit heksadesimal mempunyai bobot tertentu berdasarkan atas posisinya terhadap titik heksadesimal seperti yang ditunjukkan pada tabel 2.7.

Tabel 2.7. Daftar Bobot tiap digit bilangan heksadesimal dan ekivalensinya dalam desimal
162
161
160
16-1
16-2
Bobot tiap-tiap digit heksadesimal
                           Titik heksadesimal
256
16
1
0.0625
0.00390625
Ekivalensinya dalam desimal
                Titik desimal


Oleh karena itu bilangan heksadesimal dapat dikonversikan ke bilangan desimal dengan cara menjumlahkan bobot kali nilai-nilai dari masing-masing posisinya.
Sebagai contoh, bilangan heksadesimal 152B16 dapat diubah menjadi bilangan desimal  dengan cara sebagai berikut:

152B16  =   (1 x 163) + (5 x 162) + (2 x 161) + (11 x 160)
              =   1 x 4096 + 5 x 256   + 2 x 16    + 11 x 1
              =   4096       + 1280       + 32          + 11
              =   541910
Sehingga, 152B16  =  541910

2.5.11.  Konversi bilangan heksadesimal ke biner.
Konversi dari bilangan heksadesimal ke bilangan biner dapat dilakukan dengan cara mengubah setiap digit pada bilangan heksadesimal secara terpisah menjadi ekivalen biner  4 bit, seperti yang terlihat pada Tabel 2.8.

Tabel 2.8. Ekivalen  setiap digit  dari bilangan heksadesimal  menjadi 4 bit  bilangan biner


Digit Heksadesimal
Ekivalen biner 4 bit
0
0000
1
0001
2
0010
3
0011
4
0100
5
0101
6
0110
7
0111
8
1000
9
1001
A
1010
B
1011
C
1100
D
1101
E
1110
F
1111

Sebagai contoh, bilangan heksadesimal 2A5C16 dapat diubah ke bilangan biner sebagai berikut.
216  =   0010, MSB
A16  =   1010
516  =   0101
C16 =   1100, LSB
Sehingga,   bilangan  heksadesimal  2A5C16  dapat  diubah  menjaid  bilngan  biner 0010 1010 0101 11002.

2.5.12.  Konversi bilangan heksadesimal ke oktal.
Konversi dari bilangan heksadesimal ke bilangan oktal dapat  dilakukan dengan cara mengubah bilangan heksadesimal ke bilangan biner atau ke bilangan desimal terlebih dahulu.
 Sebagai contoh, bilangan heksadesimal 9F216 dapat diubah menjadi bilangan oktal  dengan cara diubah dulu ke bilangan desimal, sebagai berikut:
Heksadesimal         9                  F                2
Desimal                 9x162      + 15x161       +  2x160 =
                               2304      +   240        +     2     = 254610
 Selanjutnya hasil bilangan desimal diubah ke bilangan oktal,
2546/8      =  318,               sisa   210            =         28, LSB
  318/8      =    39,               sisa   610            =         68,
    39/8       =      4,               sisa   710             =         78,
      4/8       =      0,               sisa   410             =         48, MSB
Sehingga, 9F216 =  2546 10 = 47628.
Cara lain diubah dulu ke bilangan biner, sebagai berikut:
          Heksadesimal           9                  F                2
Biner                      1001           1111          0010          
 Selanjutnya hasil bilangan biner dikelompokkan setiap tiga bit dimulai dari digit paling kanan (LSB). Kemudian, setiap kelompok diubah secara terpisah ke dalam bilangan heksadesimal.

Biner                         100        111        110      010              
          Heksadesimal             4            7            6          2                
Sehingga, 9F216  =  1001111100102 = 47628.

2.6.      Bilangan Biner Pecahan

         Dalam sistem bilangan desimal, bilangan pecahan disajikan dengan menggunakan titik desimal. Digit-digit yang berada di sebelah kiri titik desimal mempunyai nilai eksponen yang semakin besar, dan digit-digit yang berada di sebelah kanan titik desimal mempunyai nilai eksponen yang semakin kecil.
Sehingga,
0.110   =  10-1          =  1/10
0.1010  =  10-2‑                =  1/100
0.2     =  2 x 0.1      =  2 x 10-1, dan seterusnya.
Cara yang sama juga bisa digunakan untuk menyajikan bilangan biner pecahan. Sehingga,
0.12    =  2-1            =  ½, dan
0.012   =  2-2‑                  =  ½2  = ¼
Sebagai contoh,
0.1112     =  1/2 + 1/4 + 1/8
             =  0.5 + 0.25 + 0.125
             =  0.87510
101.1012 =  4 + 0 + 1+ ½ + 0 + 1/8
             =  5 + 0.625
             =  5.62510
Pengubahan bilangan pecahan dari desimal ke biner dapat dilakukan dengan cara mengalikan bagian pecahan dari bilangan desimal tersebut dengan 2, bagian bulat dari hasil perkalian merupakan pecahan dalam bit biner. Proses perkalian diteruskan pada sisa sebelumnya sampai hasil perkalian sama dengan 1 atau sampai ketelitian yang diinginkan. Bit biner pertama yang diperoleh merupakan MSB dari bilangan biner pecahan. Sebagai contoh, untuk mengubah 0.62510 menjadi bilangan biner dapat dilaksanakan dengan
0.625 x 2  =  1.25,  bagian bulat   =       1 (MSB), sisa = 0.25
0.25 x 2    =  0.5,    bagian bulat   =       0, sisa = 0.5
0.5 x 2      =  1.0,    bagian bulat   =       1 (LSB), tanpa sisa
Sehingga,
0.62510      =  0.1012